
Regular Expressions and
DFAs

We have already seen the language of Regular Expressions.
1. The language represented by e is {e}; the language represented by f is f;

any letter a in S represents the language {a}
2. If E is a regular expression then so is (E) and it represents the same language

as E.
3. If expressions E and F represent languages L1 and L2 then expression E+F

represents L1 ∪ L2 .
4. If expressions E and F represent languages L1 and L2 then expression EF

represents the language of strings formed by concatenating a string from L2

onto the end of a string from L1.
5. If expression E represents language L then expression E* represents the

language of strings formed by concatenating 0 or more strings from L

together.
6. If expression E represents language L then expression E+ represents the

language of strings formed by concatenating 1 or more strings from L

together. E+=EE*

Note that our definition of the language represented by regular
expressions is recursive.

Theorem: If E is a regular expression then there is a DFA that accepts
the language represented by E.
Proof. Structural induction!!

Here are the base cases:

Se: Sf:

For any a in S: TS a

For the inductive cases, suppose E and F are regular expressions
whose languages are accepted by the e-NFA

start
E start

F

Since these are e-NFAs we can assume there is only one final state i
each automaton and there are no transitions out of it. Here are
automata for the expressions we can build from E and F:

start
E

(E):

E

F

e

e

e e

E+F:

E F

start

start

e e e
EF:

E

e
start

e

E*:

E

e
start

e

E+:

e

For the E* automaton note that we need a new start state; it isn't
enough to just make the start state final:

TS 1

0

TS 1

0

This accepts 0*1

This accepts 000 and many
other strings not in (0*1)*

Example: Find a finite automaton that accepts the language
represented by (0+1)*01

A

B

F

start

0
e C

D E1

e

1

G
e

e

e e

J

H

0 I

e

Example: Find a finite automaton that accepts the language
represented by (01+10)*

A

B

H

start

0
e C

E F1

1

I
e

e

e

e

G

D

0
e

Theorem: Any language accepted by a DFA is also denoted by a
regular expression.
Proof: This is more difficult because we don't have a recursive
definition of a DFA for induction. We need to start with an arbitrary
DFA and construct a regular expression for it.

Setup:
1. Number the states of the DFA q1, q2, ... qn where q1 is the start

state. Note that we start indexing at 1, not 0.

2. Define 𝑅𝑖𝑗
𝑘 to be the set of all strings that take the automaton

from state qi to state qj without passing through any states
numbered higher than k (where "passing through" means first
entering, then leaving).

For example, consider:

q1 q2

q3

0

q4
1

0

0

1

Here 𝑅13
2 = 00

𝑅12
0 = {0}

𝑅13
4 = 00, 010, 0110, … = 01∗0

Note that if the automaton has n states then ڂ𝑞𝑖 ∈𝐹 𝑅1𝑗
𝑛 is the set of

strings accepted by the automaton. We will use recursion on k to

show that each of the 𝑅𝑖𝑗
𝑘 sets is denoted by a regular expression.

For the base case, k=0. If i≠ 𝑗 then 𝑅𝑖𝑗
0 is empty if there is no

transition from qi to qj; if there is such a transition then 𝑅𝑖𝑗
0 =

{𝑎|𝛿 𝑞𝑖 , 𝑎 =qj} If i and j are equal 𝑅𝑖𝑖
0 = {𝑎|𝛿 𝑞𝑖 , 𝑎 =qi} ڂ {e}

In all of these cases 𝑅𝑖𝑗
0 is finite and so is represented by a regular

expression.

For the inductive case, note that for any k > 0

𝑅𝑖𝑗
𝑘 = 𝑅𝑖𝑗

𝑘−1 ∪ 𝑅𝑖𝑘
𝑘−1 𝑅𝑘𝑘

𝑘−1 ∗
𝑅𝑘𝑗
𝑘−1

don't pass
thru qk

first
trip to
state k

repeated
trips to qk

from qk

to qj

This means we can represent 𝑅𝑖𝑗
𝑘 by the regular expression

𝑟𝑖𝑗
𝑘 = 𝑟𝑖𝑗

𝑘−1 + 𝑟𝑖𝑘
𝑘−1 𝑟𝑘𝑘

𝑘−1 ∗
𝑟𝑘𝑗
𝑘−1

Finally, 𝑟 = σ𝑞𝑗∈𝐹
𝑟1𝑗
𝑛 is a regular expression that denotes the language

accepted by the automaton.

Example:

q1 q21 q3

0

1

𝑟𝑖𝑗
1 = 𝑟𝑖𝑗

0 + 𝑟𝑖1
0 𝑟11

0 ∗𝑟1𝑗
0

𝑟𝑖𝑗
2 = 𝑟𝑖𝑗

1 + 𝑟𝑖2
1 𝑟22

1 ∗𝑟2𝑗
1

k=0 k=1 k=2

𝑟11
𝑘 e e e

𝑟12
𝑘 1 1 1+1(0+e)*(0+e)=10*

𝑟13
𝑘 f f 1(0+e)*1=10*1

𝑟21
𝑘 f f f

𝑟22
𝑘 0+e 0+e (0+e)+(0+e)(0+e)*(0+e)=0*

𝑟23
𝑘 1 1 1+(0+e)(0+e)*1=0*1

𝑟31
𝑘 f f f

𝑟32
𝑘 f f f

𝑟33
𝑘 e e e

Finally, we are only interested in 𝑟13
3 .

𝑟13
3 = 𝑟13

2 + 𝑟13
2 𝑟33

2 ∗𝑟33
2

= 10*1+(10*1)e*e

= 10*1

