
Regular Expressions and 
DFAs



We have already seen the language of Regular Expressions.
1. The language represented by e is {e}; the language represented by f is f; 

any letter a in S represents the language {a}
2. If E is a regular expression then so is (E) and it represents the same language 

as E. 
3. If expressions E and F represent languages L1 and L2 then expression E+F 

represents L1 ∪ L2 .
4. If expressions E and F represent languages L1 and L2 then expression EF 

represents the language of strings formed by concatenating a string from L2  

onto the end of a string from L1.
5. If expression E represents language L then expression E* represents the 

language of strings formed by concatenating 0 or more strings from L  

together.
6. If expression E represents language L then expression E+ represents the 

language of strings formed by concatenating 1 or more strings from L  

together. E+=EE*



Note that our definition of the language represented by regular 
expressions is recursive.

Theorem: If E is a regular expression then there is a DFA that accepts 
the language represented by E.
Proof.  Structural induction!!

Here are the base cases:

Se: Sf:

For any a in S: TS a



For the inductive cases, suppose E and F are regular expressions 
whose languages are accepted by the e-NFA

start
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Since these are e-NFAs we can assume there is only one final state i
each automaton and there are no transitions out of it. Here are 
automata for the expressions we can build from E and F:
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For the E* automaton note that we need a new start state; it isn't 
enough to just make the start state final: 

TS 1

0

TS 1

0

This accepts 0*1

This accepts 000 and many 
other strings not in (0*1)*



Example: Find a finite automaton that accepts the language 
represented by (0+1)*01
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Example: Find a finite automaton that accepts the language 
represented by (01+10)*
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Theorem: Any language accepted by a DFA is also denoted by a 
regular expression.
Proof: This is more difficult because we don't have a recursive 
definition of a DFA for induction.  We need to start with an arbitrary 
DFA and construct a regular expression for it.

Setup:
1. Number the states of the DFA q1, q2, ... qn where q1 is the start 

state. Note that we start indexing at 1, not 0.

2. Define 𝑅𝑖𝑗
𝑘 to be the set of all strings that take the automaton 

from state qi to state qj without passing through any states 
numbered higher than k (where "passing through" means first 
entering, then leaving).



For example, consider:

q1 q2
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Here 𝑅13
2 = 00

𝑅12
0 = {0}

𝑅13
4 = 00, 010, 0110, … = 01∗0



Note that if the automaton has n states then ڂ𝑞𝑖 ∈𝐹 𝑅1𝑗
𝑛 is the set of 

strings accepted by the automaton.  We will use recursion on k to 

show that each of the 𝑅𝑖𝑗
𝑘 sets is denoted by a regular expression.

For the base case, k=0.  If i≠ 𝑗 then 𝑅𝑖𝑗
0 is empty if there is no 

transition from qi to qj; if there is such a transition then 𝑅𝑖𝑗
0 =

{𝑎|𝛿 𝑞𝑖 , 𝑎 =qj}  If i and j are equal 𝑅𝑖𝑖
0 = {𝑎|𝛿 𝑞𝑖 , 𝑎 =qi} ڂ {e} 

In all of these cases 𝑅𝑖𝑗
0 is finite and so is represented by a regular 

expression.



For the inductive case, note that for any k > 0

𝑅𝑖𝑗
𝑘 = 𝑅𝑖𝑗

𝑘−1 ∪ 𝑅𝑖𝑘
𝑘−1 𝑅𝑘𝑘

𝑘−1 ∗
𝑅𝑘𝑗
𝑘−1

don't pass 
thru qk

first 
trip to 
state k

repeated 
trips to qk

from qk

to qj

This means we can represent 𝑅𝑖𝑗
𝑘 by the regular expression

𝑟𝑖𝑗
𝑘 = 𝑟𝑖𝑗

𝑘−1 + 𝑟𝑖𝑘
𝑘−1 𝑟𝑘𝑘

𝑘−1 ∗
𝑟𝑘𝑗
𝑘−1

Finally, 𝑟 = σ𝑞𝑗∈𝐹
𝑟1𝑗
𝑛 is a regular expression that denotes the language 

accepted by the automaton.



Example: 

q1 q21 q3

0

1

𝑟𝑖𝑗
1 = 𝑟𝑖𝑗

0 + 𝑟𝑖1
0 𝑟11

0 ∗𝑟1𝑗
0

𝑟𝑖𝑗
2 = 𝑟𝑖𝑗

1 + 𝑟𝑖2
1 𝑟22

1 ∗𝑟2𝑗
1



k=0 k=1 k=2

𝑟11
𝑘 e e e

𝑟12
𝑘 1 1 1+1(0+e)*(0+e)=10*

𝑟13
𝑘 f f 1(0+e)*1=10*1

𝑟21
𝑘 f f f

𝑟22
𝑘 0+e 0+e (0+e)+(0+e)(0+e)*(0+e)=0*

𝑟23
𝑘 1 1 1+(0+e)(0+e)*1=0*1

𝑟31
𝑘 f f f

𝑟32
𝑘 f f f

𝑟33
𝑘 e e e



Finally, we are only interested in 𝑟13
3 .

𝑟13
3 = 𝑟13

2 + 𝑟13
2 𝑟33

2 ∗𝑟33
2

= 10*1+(10*1)e*e

= 10*1


