Regular Expressions and
DFAS

We have already seen the language of Regular Expressions.

1.

The language represented by € is {€}; the language represented by ¢ is ¢;
any letter a in X represents the language {a}

If E is a regular expression then so is (E) and it represents the same language
as E.

If expressions E and F represent languages £, and £, then expression E+F
represents £, U L.

If expressions E and F represent languages £, and £, then expression EF
represents the language of strings formed by concatenating a string from £,
onto the end of a string from £,.

If expression E represents language £ then expression E” represents the
language of strings formed by concatenating O or more strings from £
together.

If expression E represents language £ then expression E* represents the
language of strings formed by concatenating 1 or more strings from £
together. E*=EE”

Note that our definition of the language represented by regular
expressions is recursive.

Theorem: If E is a regular expression then there is a DFA that accepts
the language represented by E.
Proof. Structural induction!!

Here are the base cases:

e: O: @
Foranyain X: @

For the inductive cases, suppose E and F are regular expressions
whose languages are accepted by the e-NFA

O O O ©

start start
E F

Since these are e-NFAs we can assume there is only one final state |
each automaton and there are no transitions out of it. Here are
automata for the expressions we can build from E and F:

(E): an ©

start

E

E+F: <::£f
start
8

O

g=

Q_.
N

e
EF: (:::)""’T(:>
start E

O

O

E*:

For the E* automaton note that we need a new start state; it isn't
enough to just make the start state final:

>
@ L)‘ This accepts 0"1

0

1 This accepts 000 and many
—_—
=

other strings not in (071)"

Example: Find a finite automaton that accepts the language
represented by (0+1)°01

OO
0—>©\
o
o /

e

Example: Find a finite automaton that accepts the language
represented by (01+10)°

O-®, LB

I Gy

Theorem: Any language accepted by a DFA is also denoted by a
regular expression.

Proof: This is more difficult because we don't have a recursive

definition of a DFA for induction. We need to start with an arbitrary
DFA and construct a regular expression for it.

Setup:
1. Number the states of the DFA q,, Q,, ... 9, Where q, is the start
state. Note that we start indexing at 1, not O.
2. Define R{‘j to be the set of all strings that take the automaton

from state g; to state g; without passing through any states

numbered higher than k (where "passing through" means first
entering, then leaving).

For example, consider:

Here R%; = {00}
Rgz = {0}
R#, = {00,010,0110,...} = 01*0

Note that if the automaton has n states then Uy, _, Ry} is the set of
strings accepted by the automaton. We will use recursion on k to
show that each of the R{‘jsets is denoted by a regular expression.

For the base case, k=0. If i# j then R?j is empty if there is no
transition from g; to q; if there is such a transition then Rlpj =
{al6(q;, a)=q;} Ifiand jare equal R). = {a|5(q;, a)=q;} U {&}

In all of these cases R?j is finite and so is represented by a regular
expression.

For the inductive case, note that for any k >0

k _ pk—-1 k—1(pk—-1\"pk—-1
Ri; = Rj; U Ry (Rex ") Ry
don't pass first repeated from q,

thru q, tripto tripstoq, toq;
state k

This means we can represent Rll‘j by the regular expression

kK _ k-1 k—1(..k—1* k-1
g = Tij ~ Tt Tig G Tk

Finally, r = quezr rlnjis a regular expression that denotes the language
accepted by the automaton.

Example:

RN W

1 _ .0 | .0 (.0 *..0
rij = 1ij i1 (1) r1j
2 _ .1 4 1.1 V%1
rij = T1ij i2(122) raj

11
r12
r13
21
22
23
31
32

33

o o = o

O+¢

n S o B

o o = o

O+¢

n S o B

k=2

€

1+1(0+¢)*(0+€)=10*
1(0+£)*1=10*1

¢
(0+g)+(0+¢)(0+g)*(0+g)=0*
1+(0+g)(0+g)*1=0*1

¢
¢

e

Finally, we are only interested in r133.

ris = i3+ ri(riz) riz
= 10*1+(10*1)e*e
=10*1

