Regular Expressions and
DFAS



We have already seen the language of Regular Expressions.

1.

The language represented by € is {€}; the language represented by ¢ is ¢;
any letter a in X represents the language {a}

If E is a regular expression then so is (E) and it represents the same language
as E.

If expressions E and F represent languages £, and £, then expression E+F
represents £, U L.

If expressions E and F represent languages £, and £, then expression EF
represents the language of strings formed by concatenating a string from £,
onto the end of a string from £,.

If expression E represents language £ then expression E” represents the
language of strings formed by concatenating O or more strings from £
together.

If expression E represents language £ then expression E* represents the
language of strings formed by concatenating 1 or more strings from £
together. E*=EE”



Note that our definition of the language represented by regular
expressions is recursive.

Theorem: If E is a regular expression then there is a DFA that accepts
the language represented by E.
Proof. Structural induction!!

Here are the base cases:
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For the inductive cases, suppose E and F are regular expressions
whose languages are accepted by the e-NFA
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Since these are e-NFAs we can assume there is only one final state |
each automaton and there are no transitions out of it. Here are
automata for the expressions we can build from E and F:
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For the E* automaton note that we need a new start state; it isn't
enough to just make the start state final:
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Example: Find a finite automaton that accepts the language
represented by (0+1)°01
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Example: Find a finite automaton that accepts the language
represented by (01+10)°
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Theorem: Any language accepted by a DFA is also denoted by a
regular expression.

Proof: This is more difficult because we don't have a recursive

definition of a DFA for induction. We need to start with an arbitrary
DFA and construct a regular expression for it.

Setup:
1. Number the states of the DFA q,, Q,, ... 9, Where q, is the start
state. Note that we start indexing at 1, not O.
2. Define R{‘j to be the set of all strings that take the automaton

from state g; to state g; without passing through any states

numbered higher than k (where "passing through" means first
entering, then leaving).



For example, consider:

Here R%; = {00}
Rgz = {0}
R#, = {00,010,0110,...} = 01*0



Note that if the automaton has n states then Uy, _, Ry} is the set of
strings accepted by the automaton. We will use recursion on k to
show that each of the R{‘jsets is denoted by a regular expression.

For the base case, k=0. If i# j then R?j is empty if there is no
transition from g; to q; if there is such a transition then Rlpj =
{al6(q;, a)=q;} Ifiand jare equal R). = {a|5(q;, a)=q;} U {&}

In all of these cases R?j is finite and so is represented by a regular
expression.



For the inductive case, note that for any k >0

k _ pk—-1 k—1(pk—-1\"pk—-1
Ri; = Rj; U Ry (Rex ") Ry
don't pass first repeated from q,

thru q, tripto  tripstoq, toq;
state k

This means we can represent Rll‘j by the regular expression

kK _ k-1 k—1(..k—1\* k-1
g = Tij ~ Tt Tig G Tk

Finally, r = quezr rlnjis a regular expression that denotes the language
accepted by the automaton.



Example:
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Finally, we are only interested in r133.

ris = i3+ ri(riz) riz
= 10*1+(10*1)e*e
=10*1



